HEMOSTASIS, THROMBOSIS, AND VASCULAR BIOLOGY Depolymerized holothurian glycosaminoglycan and heparin inhibit the intrinsic tenase complex by a common antithrombin-independent mechanism

نویسندگان

  • John P. Sheehan
  • Erik N. Walke
چکیده

Depolymerized holothurian glycosaminoglycan (DHG) is a fucosylated chrondroitin sulfate that possesses antithrombinindependent antithrombotic properties and inhibits factor X activation by the intrinsic tenase complex (factor IXa– factor VIIIa). The mechanism and molecular target for intrinsic tenase inhibition were determined and compared with inhibition by low-molecular-weight heparin (LMWH). DHG inhibited factor X activation in a noncompetitive manner (reduced Vmax(app)), with 50-fold higher apparent affinity than LMWH. DHG did not affect factor VIIIa half-life or chromogenic substrate cleavage by factor IXa– phospholipid but reduced the affinity of factor IXa for factor VIIIa. DHG competed factor IXa binding to immobilized LMWH with an EC50 35-fold lower than soluble LWMH. Analysis of intrinsic tenase inhibition, employing factor IXa with mutations in the heparin-binding exosite, demonstrated that relative affinity (Ki) for DHG was as follows: wild type > K241A > H92A > R170A > > R233A, with partial rather than complete inhibition of the mutants. This rank order for DHG potency correlated with the effect of these mutations on factor IXa–LMWH affinity and the potency of LMWH for intrinsic tenase. DHG also accelerated decay of the intact intrinsic tenase complex. Thus, DHG binds to an exosite on factor IXa that overlaps with the binding sites for LMWH and factor VIIIa, disrupting critical factor IXa–factor VIIIa interactions. (Blood. 2006;107:3876-3882)

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

HEMOSTASIS, THROMBOSIS, AND VASCULAR BIOLOGY Heparin-induced substrate behavior of antithrombin Cambridge II

Cambridge II (A384S) is a highly prevalent antithrombin variant in the British population (1.14 per 1000) and predisposes carriers to a mild but significant increased risk of thrombosis. To determine if the association of Cambridge II with thrombophilia is due to a perturbation of the antithrombin inhibitory mechanism, we expressed and characterized the variant. Antithrombin Cambridge II was fo...

متن کامل

Autoantibodies to heparin from patients with antiphospholipid antibody syndrome inhibit formation of antithrombin III-thrombin complexes.

The antiphospholipid antibody syndrome (APS) is characteristically associated with thrombosis. Heparan sulfate (HS) is a physiologic endothelial cell surface modulator of normal anticoagulation, containing a specific oligosaccharide sequence that binds antithrombin III with high affinity and also is present in heparin, a related glycosaminoglycan. We hypothesized that a subset of antiphospholip...

متن کامل

HEMOSTASIS, THROMBOSIS, AND VASCULAR BIOLOGY Prothrombin protects factor Xa in the prothrombinase complex from inhibition by the heparin-antithrombin complex

Heparin is a commonly used anticoagulant drug. It functions primarily by accelerating the antithrombin inhibition of coagulation proteinases, among which factor Xa and thrombin are believed to be the most important targets. There are conflicting results as to whether anticoagulant heparins can catalyze the antithrombin inhibition of factor Xa in the prothrombinase complex (factor Va, negatively...

متن کامل

Heparin-binding domains in vascular biology.

Heparin is a major anticoagulant with activity mediated primarily through its interaction with antithrombin (AT). Heparan sulfate (HS), structurally related to heparin, binds a wide range of proteins of different functionality, taking part in various physiological and pathological processes. The heparin-AT complex, the most well understood facet of anticoagulation, serves as a prototypical exam...

متن کامل

Antithrombin III inhibits thrombin-induced proliferation in human arterial smooth muscle cells.

Thrombin has attracted increasing attention as a possible mitogen for vascular smooth muscle cells in lesion development both after vascular injury and in atherogenesis. In this study, the ability of antithrombin III to inhibit alpha-thrombin-induced DNA synthesis and cell proliferation in human arterial smooth muscle cells was analyzed. We demonstrate a concentration-dependent initiation of DN...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006